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ABSTRACT 

In the last few years, a significant increasing interest in the Wireless Sensor Networks 

(WSN) is noticed. A great challenge in WSN is the limitation of power in sensor nodes 

batteries, hence developing energy efficient solutions is a key issue for providing as long as 

possible lifetime for these networks. 

Data transmission is thought of to be the main reason for consuming power in sensor 

nodes. That is why many power efficient routing heuristics have been proposed to 

maximize sensor networks lifetime such as capacity maximization (CMAX) and Online 

Maximum Lifetime heuristics (OML). 

In order to evaluate these two heuristics, intensive researches has been conducted. One 

research was based on the Uniform distribution. Another research took the same concerns 

using Poisson distribution. These two researches worked on 1D space. A recent research 

was proposed to evaluate the OML and CMAX heuristics in 3D space. All of these 

researches agreed on the superiority of OML over CMAX heuristic.  

The type of distribution for sensor nodes gives us detailed information about the nature 

of application requirements. In other words, the accuracy of experimental results will be 

defected if the distribution was wrongly chosen. While trying to make fair comparison 

between routing protocols, major attention should be paid to the deployment strategy effect. 

This leads us to concentrate on the way that sensor network's deployment is simulated 

which is the major achievement in this thesis work. 

A
ll 

R
ig

ht
s R

es
er

ve
d 

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n 
- C

en
te

r  
of

 T
he

si
s D

ep
os

it



www.manaraa.com

xiii 

 

 

 

 

In this thesis, in order to better represent real life terrains, four different types of single 

distributions were studied. In three-dimensional (3D) space, those distributions (Uniform, 

Poisson, Normal, and Chi-square) were used to generate a Directed Acyclic Graph (DAG) 

to simulate the connectivity of random deployed WSN. 

Furthermore, we considered the multi-tone terrain changes and study its effect on the 

existing routing heuristics (namely OML and CMAX) in 3D space. For simulating 

Heterogeneous environments, 2-Hetro- and 4-Hetro-Distributions, were implemented. 

Our experimental results showed that the average lifetimes provided by OML and 

CMAX change as we change the deployment strategy. Using 2-Hetro-Distributions, 

Noraml_Poisson (NP) distribution was the best case for both OML and CMAX heuristics, 

the average lifetime for OML and CMAX were about 64209 and 2251 respectively. In 4-

Hetro-Distributions, the best case for applying OML heuristic is when using the 

Normal_Poisson_Chi-square_Uniform (NPCU) distribution with average lifetime more 

than 487418, and CMAX showed the best average lifetime when based on Chi-

square_Normal_Poisson_Uniform (CNPU) distribution with more than 1038 average 

lifetime. 

 Results of 2-Hetro-Distributions revealed the superiority of OML over CMAX 

heuristic in most of the cases. But unlike previous researches, slight improvement was 

shown by CMAX over OML when Chi-square_Normal (CN) distribution is used, with 

improvement ratio more than 7%. Also, improvement in the average lifetime equals to 

38.63% is provided by CMAX when sensor nodes were deployed in a Chi-square_Poisson 

(CP) terrain. In 4-Hetro-Distributions, the best case for applying OML heuristic is when 

using the Normal_Poisson_Chi-square_Uniform distribution (NPCU) with improvement 

ratio up to 99.82% over CMAX. Results of Chi-square_Poisson_Normal_Uniform (CPNU) 

distribution pointed out that CMAX heuristic is providing better average lifetime than OML 

heuristic, with unexpected improvement ratio up to 65.48%. As evident by the results of 

this work, it is proven that Heterogeneity of real life terrains (i.e. multi-tone terrain 

changes) has a major effect on the lifetime routing in Wireless Sensor Networks (WSN).                                

.
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Introduction 

 

1. Wireless Sensor Networks Overview 
 

Low cost, low-power, small-sized multifunctional sensor nodes has been recently 

developed as a result of advances in digital electronics, wireless communication, and 

micro-electromechanical systems (MEMS). These tiny sensor nodes, which consist of 

sensing, data processing, and communicating components, leverage the idea of sensor 

networks based on collaborative effort of a large number of nodes, (I.F. Akyildiz, 2002). 

 

Sensor nodes are capable to sense, process data, and communicate with each other via 

one or more CPUs, microcontrollers or DSP chips using a RF signals. Power is applied to 

sensor nodes in different forms such as batteries and solar cells or using sensors actuators, 

(M. Ilyas and I. Mahgoub, 2004). 

 

Sensor networks are improving traditional sensors by achieving the goal of having 

large number of nodes that cooperate together; this feature gives the advantage of having 

some sensors that can perform only sensing. In addition to that, we can deploy sensors far 

from the actual phenomenon -called sense perception- where complex techniques used by 

large sensors to distinguish the targets from environmental noise. 
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1.1. Applications of Sensor Networks 

 

Many different types of sensors may be deployed in Wireless Sensor Networks 

(WSNs) such as thermal, seismic, low sampling rate, magnetic, visual, infrared, acoustic, 

and radar. Sensor networks are used for monitoring in several domains such as: 

temperature, vehicular movement, the presence or absence of certain kinds of objects, 

mechanical stress levels on attached objects, soil makeup, lightning condition, and noise 

levels. 

 

Having the advantage of wireless connection, along with the ability of micro-sensing, 

sensor nodes promise many new application areas, (I.F. Akyildiz, 2002). Applications for 

sensor networks can be categorized into military, environment, health, home and other 

commercial areas. More categories can be classified as space exploration, chemical 

processing and disaster relief. There are some specific applications that deploy wireless 

sensor networks such as: object tracking, habitat monitoring, traffic monitoring, monitoring 

medical and environmental events, nuclear reactor controlling, and fire detection. 

 

 

1.2. Technical Challenges 

 
Sensor networks are classified under ad hoc wireless networks. Conserving energy of 

un-rechargeable batteries is considered as the most challenging issue in sensor networks, 

(I.F. Akyildiz, 2002). Mainly, there are three purposes that consume power in sensor 

networks those are: hardware operation, signal processing, and data transmission. 

Therefore, many studies focused on improving the energy efficiency in order to deal with 

that issue. 
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Although many protocols and algorithms have been proposed for traditional wireless 

ad hoc networks, they do not well suit the unique features of sensor networks. This is due to 

the fact that the number of sensor nodes in an ad hoc network can be several orders of 

magnitude lower than the nodes in a sensor network. Another characteristic that is not 

present in general ad hoc networks is the densely deployed sensor nodes which are prone to 

failures. 

 

In addition, the topology of a sensor network changes very frequently, because sensor 

nodes are limited in power, computational capacities, and memory. Furthermore, Sensor 

nodes mainly use broadcast communication paradigm whereas most ad hoc networks are 

based on point-to-point communications. 

 

1.3. Power Aware Routing in WSN 
 

In wireless sensor networks, large number of sensor nodes is densely deployed. As a 

result, neighbor nodes may be very close to each other. That is why, low levels of 

transmission power is achieved by multihop communication. In addition to short-range 

broadcast communication and multihop routing, sensor networks have frequently changing 

topology due to fading and node failures, limitations in energy, memory, transmit and 

computing power, (I.F. Akyildiz, 2002).  

 

A sensor network is designed to monitor a wide variety of ambient conditions (such 

as detecting pressure, heat, or humidity in wild life). Then, after collecting and processing 

data, sensors transmit sensed information to concerned users, (I.F. Akyildiz, 2002).   
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According to WSN's application, sensor nodes can be deployed in deterministic 

manner or randomly. In disaster relief operations or inaccessible terrains, random 

deployment is needed; this means that the position of sensor nodes can not be pre-defined 

which leads to the fact that protocols in sensor networks must be self-organized
*
. Also, 

sensor networks provide the ability for sensors to transmit a partially locally processed data 

instead of sending the raw data to the fusion-responsible nodes. 

 

Power consumption is thought of to be one of the most important requirements in 

wireless sensor networks, (Anastasi et al., 2009). If no power management schemes are 

used, two AA batteries provide only few days lifetime for very active nodes. In most of the 

systems, this is considered to be very far from the required lifetime needed for sensors. 

 

In addition to the functional requirements to be considered and met, significant 

researches has been undertaken to increase lifetime. Lifetime is defined as the successfully 

routed messages before the first failed message route. The main issue is that message 

routing in wireless sensor networks is done through battery operated sensors, this makes the 

critical applications assume that batteries are either recharged or replaced, (Sahni, 2006). 

 

Recently, some heuristics which try to delay the early depletion of sensors energy 

were proposed, such as the Online Maximum Lifetime (OML), Maximum Residual Packet 

Capacity (MRPC), and Capacity Maximization (CMAX) heuristic were designed to 

maximize the lifetime of sensors in WSN, (Misra 2002), (K. Kar, 2003), (Sahni, 2006). 

                                                             
*
 Self-organizing sensors are sensor nodes that can spontaneously create impromptu network, assemble the network themselves, 

dynamically adapt to device failure and degradation, manage movement of sensor nodes, and react to changes in task and network 

requirements. 
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In our study, we will consider two routing heuristics, those are: CMAX and OML. 

Using admission control, CMAX rejects some routes that are possible. As a modification 

for CMAX, OML heuristic was proposed. OML recommends to delay as much as possible 

the depletion of a sensor’s energy to a level below that needed to transmit to its closest 

neighbour. This is achieved by employing two shortest path computations to route each 

message, (Sahni, 2006). 

 

The deployment of sensors on which the characteristics (lifetime) of the 

aforementioned routing protocols is based on a uniform environment.  A comparison 

between MRPC, OML, and CMAX heuristics indicates that deployment strategy affects 

their characteristics, (Al-Sharaeh et al., 2009). The results of the study showed that the 

OML heuristic has superiority over the CMAX and the MRPC heuristics in terms of 

average lifetime, and network capacity. 

 

In this thesis, we will study the deployment strategy effect on the WSN routing 

protocol metrics. Our work will include four well known distributions namely: Uniform, 

Poisson, Normal, and Chi-square distribution.  

 

In addition to single distributions, our strategy takes in consideration real life 

environment such as multi-tone terrain changes (Heterogeneous Environment). In order to 

better represent real life environment, Two-Hetro-Distributions and Four-Hetro-

Distributions were used. Basically, WSN were deployed in three-dimensional environment. A
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The study also includes the dimension effect (1D and 3D) on the lifetime performance 

metric.  

2. Thesis Objectives 
 

 

This study is conducted to achieve the following: 

• Implementing and analyzing the existing heuristics using single distributions 

including Uniform, Poisson, Normal, and Chi-square distribution. 

• Implementing and analyzing the existing heuristics using 2-Hetro-Distributions. 

• Implementing and analyzing the existing heuristics using 4-Hetro-Distributions. 

• Comparing the results of one-dimensional and three-dimensional environment 

and studying the dimension effect.  

• Comparing the results of single distributions, 2-Hetro-Distributions, 4-Hetro-

Distributions and studying the effect of average lifetime, and effect of 

distribution route on lifetime maximization. 

 

3. Thesis Overview  
 

 

This thesis is organized as follows. In Chapter One, a problem overview, types of 

applications, technical challenges that face sensor networks system, power aware routing 

methods, and finally, the main objectives for the proposed system are discussed.  In 

Chapter Two, other existing heuristics and studies in the literature for maximizing lifetime 

routing using 1D single distribution are reviewed. The description of maximizing lifetime 

routing using Uniform, Poisson, Normal, and Chi-square distribution and their effect on the 
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connectivity of sensors and the required energy to transfer packets from one sensor to 

another using search methods will be illustrated in maximizing lifetime routing heuristics in 

Chapter Three. Experiments and the evaluation of the results for the new heuristic using 

different types of distribution in single, 2-Hetro, and 4-Hetro distributions are given in 

Chapter Four. Chapter Five includes thesis conclusion and suggested future studies.   
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Literature Review 

1. Overview 

 

Over the past few decades, due to the fact that power limitation in wireless sensor 

networks (WSN) is a great challenge, most of the researches were proposed to maximize 

network lifetime. For this purpose, energy-efficient algorithms have been studied and many 

techniques were presented to either maximize the capacity like (K. Kar 2003), or the 

lifetime of the network, (Sahni, 2006). Some of these researches will be discussed in the 

next section. 

 

Many researchers used balancing formulations for maximizing the lifetime of sensor 

networks for example, (Chang and Tassiulas 2000), (Toh 2001) and (Wu 2002). Some 

researchers achieved lifetime maximization for sensor networks using energy-efficient 

routing algorithms such as, (Misra and Banerjee, 2002). 

 

Other researchers assumed that, the distribution type is a key issue to maximize 

lifetime for wireless sensor networks. In order to better fit real life terrains they used 

Poisson distribution, like (Al-Sharaeh et al., 1996) and (Al-Sharaeh et al., 2009) 
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2. Related Works 

 

In Al-Sharaeh(Al-Sharaeh et al., 1996) paper, researchers discussed the use of 

Poisson distribution in order to solve the scheduling problem  and determine which 

heuristic better fits the real-world systems. According to their study, they found that 

Poisson distribution give a better description for real environment when compared to the 

task graph of shuttle space main engine. 

 

Singh et al. (Singh, 1998) proposed five metrics that maybe used in selecting the 

routing path for energy efficient routing. The first metric is to use a minimum-energy path 

from source node s to destination node t (i.e. the sum of the edge weights is minimum), 

which can be computed using a shortest path algorithm. But using a minimum-energy path 

for the current route request may result in routing failure in future transmissions.  

 

The other four metrics are, maximize time to network partition, minimize variance in 

node energy levels, minimize the node cost of each transmission
†
, and minimize maximum 

node cost. The first (minimum-energy path) and the fourth (minimize node cost), raise 

concerns about the difficulty of implementing the remaining three metrics in a routing 

protocol. 

 

In Heinzelman (Heinzelman 2000), they proposed clustering-based algorithm 

(LEACH) for sensor networks, which is a protocol to utilize randomized rotation of cluster-

                                                             
†
 The cost of a node is some function of the amount of energy used so far by that node 
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heads in order to distribute the energy load among the sensor network. Localized 

coordination is used to enable robustness and scalability for dynamic networks. To reduce 

the amount of information that must be transmitted to the base station, LEACH 

incorporates data fusion into the routing protocol. As it is able to distribute energy 

dissipation evenly throughout the sensors, LEACH algorithm could increase the useful 

system lifetime for the network to the double. 

 

Meanwhile, in Chang (Chang and Tassiulas 2000), linear programming formulation 

for maximizing lifetime was developed. The rate of each node to generate messages is 

needed for the formulation. The assumption states that the single important resource is the 

limited battery energy. Hence, instead of routing to minimize the absolute consumed 

power, the traffic is routed in a way to balance the energy consumption among the nodes in 

proportion to their energy reserves. 

 

After that, Toh (Toh 2001) developed two online algorithms to select a source-to-

destination path, the MMBCR (min-max battery cost routing) and CMMBCR (conditional 

MMBCR). To maximize lifetime MMBCR need to achieve some balance between the 

maximum residual energy at the nodes along the chosen path P, and the energy consumed 

by a route. CMMBCR (conditional MMBCR) looks for source-to-destination path with 

minimum energy, in which every sensor has a residual energy more than Y (Y is a 

threshold that represents energy units). Otherwise, if there is no path from source to 

destination that satisfies this property, then MMBCR is used instead. 
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One year later, A. Misra (A. Misra et al., 2002) proposed the MRPC (maximum 

residual packet capacity), a power-aware routing algorithm for maximizing lifetime. MRPC 

is an energy-efficient routing algorithm that increases the operational lifetime of multi-hop 

wireless network. MRPC uses two aspects to identify node’s capacity these are, node’s 

residual battery energy and the expected energy spent in reliably forwarding a packet over a 

specific link. This captures scenarios where link transmission costs depend on link error 

rates and physical distances between nodes. MRPC algorithm uses min-max formulation to 

select the path that has the largest packet capacity at ‘critical’ node (the node with the 

smallest residual packet transmission capacity) in the selected path. 

 

Contemporarily, (Wu, 2002) have investigated routing based on the selection of the 

connected dominating sets to maximize network lifetime. Selection of the dominating sets 

is based on the node degree and energy level of each host. The goal is to provide a selection 

scheme that balances the overall energy consumption in the network, and generate a 

relatively small connected dominating set at the same time. 

 

CMAX (capacity maximization) is an online capacity-competitive algorithm, 

proposed in (K. Kar 2003). They defined capacity as, the number of messages routed over 

some time period. To achieve a logarithmic competitive ratio, the algorithm CMAX does 

admission control. That is, some possible routes are rejected. 
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Consequently, Aslam (Aslam 2003) mentioned that for lifetime maximization 

problem, there is no on-line algorithm with a constant competitive ratio O(n)
‡ 
to the optimal 

off-line algorithm. In large wireless ad-hoc networks for applications where the message 

sequence is unknown, Aslam discussed the online power-aware routing; the author has 

shown that it is impossible to design an on-line algorithm that has a constant competitive 

ratio to the optimal on-line algorithm. 

 

After that, (Stojmenovic and Lin, 2004) developed localized algorithms to maximize 

lifetime, they combined both nodes lifetime and distance based power metrics to give out a 

new power cost metric. Researchers also investigated some properties of power adjusted 

transmission and showed that, if additional nodes can be placed at desired locations 

between two nodes at distance d, the transmission power can be made linear in that distance 

d. Their investigation provides basis for cost, power, and power-cost localized routing 

algorithms. Location of node’s neighbours and destination are the two bases for each node 

to make routing decisions solely. 

 

In Y. Hou (Y. Hou et al., 2005) studied the network lifetime by considering 

Lexicographic Max-Min (LMM) node lifetime problem. LMM concerns about not only 

maximizing the time until the first node fails, but also maximizing the lifetimes for all 

nodes in the network. Two contributions are considered, first to develop a polynomial-time 

algorithm to determine LMM-optimal node lifetime vector. Second, to present another 

polynomial-time algorithm to calculate the flow routing schedule such that the MML-

                                                             
‡
 The competitive ratio of an online algorithm is the ratio between the performance of that algorithm and the optimal online algorithm 

that has access to the entire execution sequence prior to making any decisions. 
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optimal node lifetime vector can be achieved. This paper provides an improvement to the 

state-of-the-art algorithmic design for network-wide node lifetime problem. 

 

After that, (J. Park and S. Sahni, 2006) proposed OML (Online Heuristic for 

Maximum Lifetime Routing) heuristic, in which future route is not needed to be indicated 

in order to send a message. To determine the effect of transmission radius on the 

performance of OML heuristic, they used ten networks each is randomly obtaining sensors 

in 25*25 grid, considering that for each network there will be 10 route requests to be 

generated. The objective of OML heuristic is to maximize network lifetime which is 

accomplished using a two-step algorithm to find the path for each routing request. Results 

show that OML heuristic is superior on the capacity metric. Additionally, it results in 

greater lifetime and its performance is less sensitive to the selection of heuristic parameters. 

 

Two years later, (Al-Sharaeh et al., 2008) introduced a Multi-Dimensional Poisson 

Distribution Heuristic to better evaluate the routing heuristics; by taking in consideration 

earth's terrain and the multi-dimensional concept. This is done by the way they generate the 

placement of the sensors as well as the interconnection between sensor nodes. A major 

effect on the performance of different routing heuristics was gained. Mainly, though OML 

has superiority over CMAX, CMAX shows resilience to terrain changes. 

 

Recently, (Al-Sharaeh et al., 2009) investigated the performance of three heuristics: 

(OML, MRPC, and CMAX), in order to study the effect of Poisson distribution on 

maximizing wireless sensor networks lifetime. Their simulation results show that the OML 
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heuristic has superiority over the CMAX and the MRPC heuristics in terms of average 

lifetime and network capacity. The experiments indicate that the average lifetime when 

using Poisson distribution is less than the average lifetime when using Uniform 

distribution, due to the clustering of nodes around the mean. 
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MAXIMIZING LIFETIME ROUTING HEURISTICS 

IN WIRELESS SENSOR NETWORKS 
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Maximizing Lifetime Routing Heuristics in Wireless Sensor Networks 

 

Sensor network model in the perspective of programming, the use of three-

dimensional, different types of statistical distribution, maximum lifetime routing heuristics, 

and implementation of power aware routing heuristics will be studied in this chapter. 

1. Sensor Network Model 
 

 

Using a directed graph G= (V, E), a wireless sensor network is described, where V is 

the set of nodes, and E is the set of edges between these nodes. For modeling Wireless 

Sensor Networks (WSN), a directed edge from node v to node u exists, if a single-hop 

transmission form node v to node u is possible. The current energy in transmitter sensor u is 

ce(u), for each edge in the graph (v, u)∈E. In case of single hop transmission from sensor u 

to sensor v, ce(u) is represented by Equation (3.1) (Sahni, 2006). 

),()()( vuwucuc
ee

−=                                                (3.1) 

Where v is the destination sensor node, and w(u,v) is the energy required to make a 

single hop transmission from sensor u to sensor v, such that w(u,v) > 0, and 

. The current energy in sensor v is unaffected by the transmission from 

(u) to (v), because in (Sahni, 2006) paper they assume that no energy is consumed during 

message reception.  

 

An adjacency matrix can be used to represent directed graphs of WSN (Sahni, 2006; 

Al-Sharaeh, et al., 2008; Al-Sharaeh, et al., 2009).  The adjacency matrix of a finite 

directed graph G on n vertices (where n is the number of vertices in G), is the n × n matrix 
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such that, the diagonal entry a(i, i ) is assigned by zeros, because here we assume that there 

is no internal loops in the WSN. The existence of an edge from sensor i to sensor j is 

represented by a non-diagonal entry a(i, j)= 1, otherwise a(i, j)=0. 

 

In our experiments, directed graph was used to represent sensor network, For example, 

Figure 3.1(a) shows a simple representation for sensor network N. As, can be seen from the 

figure, the nodes are representing sensors, and the edges represent the existence of single-

hop communication between the sensor nodes. The adjacency matrix of the sensor network 

N is shown in Figure 3.1(b). 

 

 

(a): Simple graph network representation                     (b): Corresponding adjacency matrix 

        

Figure 3.1: Representation of Wireless Sensor Network (N) 
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We can notice from Figure 3.1(b) that the network N has been implemented using 1D 

(one dimension) to represent locations for sensor nodes. In (Al-Sharaeh, et al., 2009), such 

representation for sensors has been used. But in this work, basically we represent sensors 

using 3D (three dimension) space; each sensor is represented using three dimensions: X, Y, 

and Z, in order to get more realistic results (Al-Sharaeh, et al., 2008). 

2. Use of Three-Dimensional: 
 

In the literature, the known method is to use one dimension for representing sensor 

nodes. A better description for real environment can be gotten by using 3D instead of 1D to 

represent the position for each sensor in the network, (Al-Sharaeh, et al., 2009). 

 

In this work, we explored the use of 3D in representing sensor nodes positions, in 

order to better represent real life terrains. Furthermore, to get even better description for 

real environment, we investigated different distribution types, those are: Uniform, Poisson, 

Normal, and Chi-square distributions. Each of these distributions will be investigated 

separately in 1D, 2D, and 3D. 

 

To implement the 3D representation for sensor nodes locations, three dimensions X, Y, 

and Z will be used. Connectivity between sensors in 3D space is implemented, such that; 

the sensor node (s) is considered to be connected to sensor (t) only if the cell in the 

adjacency matrix for the cross point of row (s) and column (t) holds the value 1. In 3D 

space, the existence of value 1 in the adjacency matrix's cell, using Poisson distribution for A
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example, depends on satisfying the condition that; each of X, Y, and Z axis should be 

greater than or equals to the corresponding mean value of Poisson distribution. 

  

3. Statistical Distributions 
 

 

Several types of statistical distribution procedures exist according to the purpose of 

analysis. Furthermore, almost every real life system contains such resources of randomness. 

The accuracy of experimental results will be defected if the distribution was wrongly 

chosen, (M.Law & Kelton, 2000). The type of sensor nodes distribution gives us detailed 

information about the nature of application requirement. It also indicates how each source 

sensor node communicates with destination sensor nodes. 

 

In this work, all subsequent formulas of the statistical functions are given for the 

standard form, since the general form of probability functions can be expressed in terms of 

the standard distribution
§
. Four types of distribution, Uniform, Poisson, Normal, and Chi-

square distribution, are studied in the following sections. These distributions are 

implemented using 3D (three dimension) space to represent the positions for sensor nodes. 

 

 

 

 

                                                             
§
 All statistical distributions were referenced from: NIST/SEMATECH e-Handbook of Statistical Methods, 

http://www.itl.nist.gov/div898/handbook/, June-2009.  
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3.1. Uniform Distribution 
 

Most of the performed simulations in literature are based on distributing the sensor 

nodes randomly using uniform distribution, (Kar 2003) and (Sahni 2006). Uniform 

distribution of sensors best fits the symmetric environment where the lands are flat and 

there are no geographical differences in terrains. Equation (3.2) expresses the general 

formula for the probability density function of the uniform distribution.  

          













≤≤

−=

     otherwise                           0

xbfor              
1

)(
a

abxf                                     (3.2) 

With a <b, where (a and b) are real numbers, (a) is the location parameter and (b-a) is 

the scale parameter. Standard Uniform distribution, as expressed by Equation (3.3), is 

defined where a=0 and b=1. Figure 3.2 illustrates the probability distribution for Uniform 

distribution. 

          

1x0for              1)( ≤≤=xf                                         (3.3) 

 

 

             Figure 3.2: Probability Distribution Function for Uniform Distribution 
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As described by Figure 3.2, Uniform is a distribution that has constant probability, 

which means that sensor nodes are evenly distributed. This is shown in Figure 3.3. 

 

                    Figure 3.3: 3D Sensor Nodes Distribution Based on Uniform Distribution 

3.2. Poisson Distribution 
 

 
Real environment is characterized by terrain changes, which is hard to be handled 

using Uniform distribution. That is due to the fact that the use of Uniform distribution 

causes sensor nodes to be evenly distributed. In order to represent the train changes, 

Poisson distribution is used, as it has the nature of best fitting the asymmetric environment 

(Al-Sharaeh, et al., 2008; Al-Sharaeh, et al., 2009). The Poisson distribution is used to 

model the number of events occurring within a given time interval. The Poisson distribution 

function is given by Equation (3.4), and Figure 3.4 expresses the Poisson probability 

distribution function for four values of the shape parameter .  
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                                      (3.4) 

 

Figure 3.4: Probability Distribution Function for Poisson Distribution         

 

Where is the shape parameter which indicates the average number of events in the 

given time interval. Poisson distribution is appropriate for applications that involve 

counting the number of times a random event occurs in a given amount of time, distance, or 

area, etc. Therefore, Poisson distribution is used in some environmental applications, such 

as: detecting earthquakes, battlefields, and volcanoes detection application. Figure 3.5 

shows sensor nodes distribution based on Poisson distribution, it is clear that sensors are 

concentrated around the mean. This kind of deployment fits the case where sensors are 

deployed via airplane in a terrain that is close to valleys. 
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Figure 3.5: 3D Sensor Nodes Distribution Based on Poisson Distribution 

 

3.3.  Normal Distribution 
 

 
Another alternative way of deploying sensor nodes is the Normal distribution. Normal 

distribution better represents geographical differences in terrains. Unlike Poisson 

distribution, Normal distribution of sensors best fits the environment where the lands are 

not flat but there are some symmetric geographical differences in terrains. Equation (3.5) 

expresses the probability distribution function of the Normal distribution. 

                                                                                    (3.5) 
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Where  is the location parameter and  is the scale parameter. The case where  = 0 

and = 1 is called the standard normal distribution. The standard normal distribution is 

expressed by Equation (3.6). Normal probability distribution function is illustrated in 

Figure 3.6. 

                                                                                                                                                                                                                   (3.6) 

  

 

Figure 3.6: Probability Distribution Function for Normal distribution 

  

Figure 3.7 shows sensor nodes distribution in three dimensional space based on 

Normal distribution. From the figure, it can be noticed that sensors locations are 

concentrated but in symmetric form.  
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Figure 3.7: 3D Sensor Nodes Distribution Based on Normal Distribution 

 

3.4. Chi-square Distribution 
 

The fourth distribution we used in this thesis work is the Chi-square distribution. Using 

Chi-square distribution, sensor nodes are scattered in random manner, with concentration in 

some places while having few number of sensors in other places. Chi-square distribution 

results when  independent variables with standard normal distributions are squared and 

summed. The formula for the probability distribution function of the chi-square distribution 

is shown by Equation (3.7). Where  is the shape parameter and  is the gamma function. 

                                                                   (3.7) 

Where the gamma function is expressed by Equation (3.8) 

                                                                                                       (3.8) 
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Figure 3.8 shows the Chi-square probability distribution function for 4 different values 

of the shape parameter.  

 

Figure 3.8: Probability Distribution Function for Chi-square Distribution  

 

Like Poisson distribution, Chi-square distribution represents hard terrain environments 

that have geographical changes. A major difference between Chi-square distribution and 

Poisson distribution is that in Chi-square distribution sensors are more concentrated in the 

left side of the mean. This leads to the fact that Chi-square distribution is used for 

representing an environment with terrains harder than that represented by Poisson 

distribution, as shown in Figure 3.9.  
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              Figure 3.9: 3D Sensor Nodes Distribution Based on Chi-square Distribution 

 

3.5. Example of Wireless Sensor Network Application: 

 
Nowadays, sensor deployment applications are widely used, one of these applications 

is Tsunami Warning System (TWS). Tsunamis defined as a series of very long waves 

generated by any rapid, large-scale disturbance of the sea. Most are generated by sea floor 

displacements caused by undersea earthquakes, volcanic eruptions and other underwater 

explosions. Thus, great destruction and loss of lives within minutes on shores near the 

source may be caused by Tsunamis. The basic design for Tsunami Warning System 

consisted of four components: (1) a bottom pressure recorder (BPR), (2) an acoustic link 

(3) a surface buoy equipped with (4) a satellite telecommunications capability (Yilmaz M., 

2004), as shown in Figure 3.10.  
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Figure 3.10: Tsunameter For Pacific Network, (Yilmaz M., 2004). 

 

The bottom pressure recorder is the main sensing element. Continuously, this sensor 

monitors pressure, once the pressure reading changes above a specified threshold, the 

tsunameter automatically transmits data to a surface buoy. Then the surface buoy makes a 

satellite connection to Tsunami warning centers to evaluate the threat and issue a tsunami 

warning. In this application, positions of sensor nodes are previously engineered and not 

randomly deployed. 
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3.6. Example of Heterogeneous Terrains Application:  
 

 

Another application for wireless sensor networks is avalanching predictions. This 

application requires random distribution for sensor nodes. In order to make full coverage, 

all the challenges that may face sensor network deployment are portrayed by mountainous 

terrains.  Therefore, when considering the fact that real life environment is featured with 

terrain changes; deployment strategy should have a major effect on evaluating a routing 

heuristic. In this thesis work, we study the deployment strategy effect on the WSN routing 

protocol metrics. Our strategy takes in consideration real life environment such as multi-

tone terrain changes (Heterogeneous Environment). Figure 3.11 shows the landscape of 

typical environment that ranges from flat land, hilltop, cliffs, valleys, to mountains top. 

 

 
Figure 3.11: Mountains Terrains for Avalanche Detection WSN Application. 
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It is obvious from the figure that the space to be covered by sensor nodes is 

heterogeneous. As we are trying to make fair comparison between the two routing protocols 

(OML and CMAX), major attention should be paid to the deployment strategy.  To achieve 

this goal, we concentrate on the way that sensors network deployment is simulated. For 

that, the random graph that both simulate the position as well as the connectivity between 

sensor nodes is generated in a form that fits multi-tone terrain changes. 

3.7. Implementation of Heterogeneous Terrains: 
 

In order to get more realistic description for real environment, we investigate 

heterogeneous environment, by having more than single distribution in the deployment 

graph. A second goal to be achieved in this work is to point out if the deployment route (i.e. 

the order of distributions) does affect maximizing lifetime routing heuristics. For that, we 

investigated non-single distributions for wireless sensor networks. Heterogeneous 

distributions in this work are divided to two types, 2-Hero-distribution, and 4-Hetro-

distribution. 

 

In 2-Hetro-distribution, the space of deployment for sensors is divided to two equal 

halves each with different type of distribution. Distributions to be discussed here include: 

Uniform, Poisson, Normal, and Chi-square distribution. To match these four distributions 

into a 2-Hetro distribution, we will have 6 types of distributions which are: Uniform_Chi-

square(UC), Uniform_Poisson(UP), Uniform_Normal(UN), Chi-squre_Poisson(CP), Chi-

squre_Normal(CN), and Normal_Poisson(NP). Implementation for the Uniform_Chi- A
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square(UC) distribution for example, will be by having Uniform distribution in the top of 

the graph with Chi-square distribution in the bottom. 

 

In 4-Hetro-distribution, the space of deployment is divided into four quarters; each 

quarter has different type of distribution for network deployment. As a result for 

implementing each quarter with non-repeated distribution, we will have (4*3*2*1) that is 

24 cases. This thesis will discuss six types of 4-Hetro-distributions, listed as: Poisson_Chi-

square_Normal_Uniform(PCNU),Chi-square_Poisson_Uniform_Normal(CPUN), Normal 

Poisson_Chi-square_Uniform(NPCU),Poisson_Chi-square_Uniform_Normal (PCUN),Chi-

square_Normal_Poisson_Uniform(CNPU), and Chi-square_Poisson_Normal_Uniform 

(CPNU).  

 

For example the order of the Four-Hetro-distribution NPCU, is meant to be: Normal 

distribution is implemented in the top-left quarter, with Poisson distribution in the top-right, 

along with Chi-square distribution implemented in the bottom-left quarter, and finally the 

Uniform distribution position will be in the bottom-right quarter, as shown in Figure 3.12. 

N P 

C U 

 

Figure 3.12: Normal_Poisson_Chi-square_Uniform Distribution 
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4. Maximum Lifetime Routing Heuristics 
 

 
Data transmission in wireless sensor networks is battery operated. In addition, signal 

processing and hardware operation are thought of to be consuming energy. This is 

considered to be the most challenging issue, as the battery is neither replaceable nor 

rechargeable (Sahni, 2006). This is due to the fact that, most of the sensor networks are 

unreachable to be recharged or replaced after deployment, for example,  deploying sensor 

networks in forests or battlefield. In our study, a very important metric to maximize lifetime 

in wireless sensor networks is energy conservation. Energy is conserved using multi-hop 

routing in wireless sensor networks, (Sahni, 2006). Hence, the sensor nodes between source 

(s) and destination (t) are used as relays. In order to consider real life environment such as 

multi-tone terrain changes, we have used two well known heuristics those are OML and 

CMAX heuristics. 

  

4.1. CMAX Heuristic 
 

The first heuristic used CMAX (capacity maximization) heuristic which makes 

admission control.  That is, it rejects some routes that are possible (Kar, 2003). CMAX 

heuristic provides a single path for each message (i.e. no multiple paths are used), and all 

messages are assumed to be routed directly after the route is requested. Using CMAX 

(capacity maximization) heuristic, each link in the network is represented by a 

corresponding weight. When a message is routed through a link, the weight of that link is 

increased by the energy consumed to pass through that link; it is also increased by the 

energy spent by the transmitting node. The specification of the shortest path in CMAX 
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heuristic is done with respect to the links weights. Using admission control, the CMAX 

heuristic can occasionally reject messages if they are considered to be too detrimental to the 

network’s residual capacity.  

 

Let a(u) be the percentage of the initial energy that has already been spent at the sensor 

node in the wireless sensor network. It can be calculated using Equation (3.9) as follows: 

        )(/)(1)( uiucua ee−=                                                         (3.9) 

While the weight of every edge (u,v) is renewed, as Equation (3.10) shows: 

                                1) - (*),(),(
)(ua

cvuwvuw λ=                                           (3.10)    

Where λc is an algorithm parameter and 1) - (
)(ua

cλ is the cost function for giving the 

edge weight. Then, in the resulting graph, the shortest path (p) from source to destination is 

determined. Figure 3.13 illustrates the CMAX Heuristic. 
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Heuristic 1: CMAX Heuristic  

Step 1: [Initialize] 

(a) Eliminate from G every edge (u, v) for which: 
                      

(b) Change the weight of every remaining edge (u, v) to: 

                            

          Where   is a heuristic parameter , a(u) is the percentage of the initial energy that has        

           already been spent at the sensor node .  

  

        Step 2: [Shortest Path] 

     Let P be the shortest source-to-destination path in the modified Graph. 

 

        Step 3: [Wrap Up] 

     If no path is found in Step 2, the route is not possible. Use P for route if its length is less  than σ. 

Figure 3.13: CMAX Heuristic 

 

To implement heterogeneous terrains, some modifications were done on CMAX 

heuristic. For example, CMAX based on the Four-Hetro-distribution Normal_Poisson_Chi-

square_Uniform Distribution (NPCU) is illustrated in Figure 3.14. 
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Heuristic 2: CMAX Heuristic based on NPCU Distribution 

Assumption: The graph in which sensor nodes are deployed is divided to four quarters. 

      In 1
st
 quarter:  sensors are distributed using Normal distribution. 

      In 2
nd

 quarter:  sensors are distributed using Poisson distribution. 

      In 3
rd

 quarter:  sensors are distributed using Chi-square distribution. 

      In 4
th
 quarter:  sensors are distributed using Uniform distribution. 

     For each routing request  = ( ) two steps are done: 

 

Step 1: [Initialize] 

(a) Eliminate from G every edge (u, v) for which: 
                      

(b) Change the weight of every remaining edge (u, v) to: 

                            

                   Where   is a heuristic parameter , a(u) is the percentage of the initial energy that has        

                    already been spent at the sensor node .  

  

        Step 2: [Shortest Path] 

           Let P be the shortest source-to-destination path in the modified Graph. 

 

        Step 3: [Wrap Up] 

           If no path is found in Step 2, the route is not possible. Use P for route if its length is   

           less  than σ. 

Figure 3.14: CMAX Heuristic Based on NPCU Distribution 
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4.2.  OML Heuristic 
 

The other heuristic is OML (Online Maximum Lifetime). With OML heuristic, in 

order to route each message, two shortest path computations must be employed. To 

maximize lifetime, it is recommended to delay as much as possible the depletion of a 

sensor’s energy to a level below that needed to transmit a message to its closest neighbour 

(Sahni, 2006).  OML heuristic is an enhancement of the CMAX heuristic that uses a two-

step approach where they remove those edges with low energy from the graph. Then, run 

Dijkstra’s to find the shortest path on a graph where the edge weights have been modified 

in such a way that the paths found usually use nodes with high energy levels and edges with 

low energy costs. 

 

To maximize lifetime, OML accomplishes two steps to find a path for each routing 

request ri= (si, ti). In the first step, all edges with current energy, such that ce(u) < w(u, v) 

are removed from (G). That's because, these transmission requires more energy than 

available for the edges. Let the resulting graph be G = (V, E).  Next, use shortest path 

algorithm to determine the minimum energy path P`i from (s)i to (t)i in graph G`. If there is 

no path for (s) to (t), then the routing request fails. But if routing request exists, then 

minimum energy path P` is used to compute the residual energy, Equation (3.11) illustrates 

how to compute it. 

v) w(u,- (u)c = (u)r ee                                                    (3.11) 

 
Equation (3.12) shows how the minimum residual energy minRE is calculated. 

            P}in u |(u)r min{ = minRE e                              (3.12) 
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Let G`` = (V, E``) be a graph that is obtained from G` by removing all edges (u,v) in 

E` with ce(u) – w(u,v) < minRE. Which means that all the edges with residual energy 

below (minRE) will pruned from the graph. This means, we prevent the reduction of energy 

from sensors with low energy. 

�

Now,�find�the�path�to�be�used�to�route�the�request�(r),�by�assigning�

weights� for� the�obtained�graph�G``.�As�expressed� in�Equation� (3.13),� let�

eMin�be�the�energy�needed�by�sensor�(u)�to�transmit�a�message�to�its�

nearest� neighbor� in� G‘.� This� is� done� to� satisfy� the� desired� targets� to�

minimize� total� energy� consumption� and� to� prevent� the� depletion� of� a�

sensor�s�energy.��

eMin(u) = min { w(u,v) | (u,v) in E``}                                             (3.13) 

Now, let ρ (u,v) be defined using Equation (3.14). 







 >

=
otherwise    c

 eMin(u)  v) w(u,- (u)c if 0
),(

 e
vuρ                                               (3.14) 

 

Where (c) is an algorithm parameter (that is non-negative constant). Sensor's residual 

energy becomes low as a result of updating the weights through ρ , in which we assign high 

weights to the edges used in routing path.  For each (u) in V, a(u) is defined as we can see 

in Equation (3.15)
 **

. 

    a(u) = minRE / ce(u)                                                               (3.15) 

The new weight w``(u,v) assigned to edge (u,v) in E``is defined as in Equation(3.16), 

Where λc is another non-negative constant and an algorithm parameter.  

                                                             
** All equations for CMAX and OML heuristics are implemented by referring to (Sahni, 2006) paper. 
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w``(u,v) = (w(u,v) + ρ (u,v)) (λc
a(u) 

-1)                                     (3.16) 

Because of the (λc) term, all edges starting from a sensor whose current energy is 

small relative to (minRE) are assigned a high weight. Figure 3.15 illustrates the OML 

Heuristic. 

 

Heuristic 3:  OML Heuristic  

Step 1: [Compute G′′] 

(a) G′ = (V, E′), where . 

(b) Let Pi be a shortest si to ti path in G′. 
            If there is no such Pi, the route request fails, then stop. 

(c) Compute the minimum residual energy minRE for sensors other than ti on Pi as : 
             = min {  

 

(d) Let G′′ = (V,E′′) where E′′=   

 

Step 2: [Find route path] 

(a) Compute the weight w′′(u, v) for each edge of E′′ as : 

                  , Where:  

                   

                   c symbol is a non-negative constant and it is a heuristic parameter. 

                   eMin is the energy needed by sensor u to transmit a message to its nearest neighbor in G``  

                  eMin(u) = min { w(u, v) | (u, v) Є E``}  

                       

(b) Let P``i be a shortest from si to ti path in G``. 
(c) Use P``i to route from si to ti. 

Figure 3.15: OML Heuristic  
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As we can see, edges whose use on a routing path will result in failure of a future 

route are unlikely to be selected by the weighting function. In addition, two shortest path 

algorithms are used. This is done to allow us to do one level look ahead without increasing 

complexity too much and in the same time to gain more lifetime. 

 

As done with CMAX heuristic, OML is also modified to implement each of the 

heterogeneous distributions discussed in this work. In order to implement OML heuristic 

based on NPCU distribution, for example, we used the heuristic illustrated in Figure 3.16.  
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Heuristic 4: OML Heuristic based on NPCU Distribution 

Assumption:  The graph in which sensor nodes are deployed is divided to four quarters. 

      In 1
st
 quarter:  sensors are distributed using Normal distribution. 

      In 2
nd

 quarter:  sensors are distributed using Poisson distribution. 

      In 3
rd

 quarter:  sensors are distributed using Chi-square distribution. 

      In 4
th
 quarter:  sensors are distributed using Uniform distribution. 

     For each routing request  = ( ) two steps are done: 

Step 1: [Compute G′′] 

(a) G′ = (V, E′), where . 

(b) Let Pi be a shortest si to ti path in G′. 
            If there is no such Pi, the route request fails, then stop. 

(c) Compute the minimum residual energy minRE for sensors other than ti on Pi as : 
             = min {  

 

(d) Let G′′ = (V,E′′) where E′′=   

 

Step 2: [Find route path] 

(a) Compute the weight w′′(u, v) for each edge of E′′ as : 

                  , Where:  

                   

                   c symbol is a non-negative constant and it is a heuristic parameter. 

                     eMin is the energy needed by sensor u to transmit a message to its nearest neighbor in G``  

                  eMin(u) = min { w(u, v) | (u, v) Є E``}  

                       

(b) Let P``i be a shortest from si to ti path in G``. 
(c) Use P``i to route from si to ti. 

Figure 3.16: OML Heuristic Based on NPCU Distribution 
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Experimental Results and Discussion 

 

Evaluation of single distributions, 2-Hetro-distributions, and 4-Herto-distributions for 

maximizing lifetime routing, using Uniform, Poisson, Normal and Chi-square distribution 

is presented in this section. Depending on the assumptions, the performed experiments, 

result analysis, performance measurement and a comparison of the results for single 

distributions, 2-Hetro-distributions, and 4-Herto-distributions are presented.  

 

1. Implementation of Power Aware Routing Heuristics 
 

 

The Uniform, Poisson, Normal and Chi-square distributions were implemented in this 

thesis using single distributions, 2-Hetro-distributions and 4-Hetro-disrtributions. In order 

to get better description for real environment, 3D space is used in the implementation of 

sensor networks. According to these distributions, while meeting better description for real 

environment, we calculate the network lifetime to determine if the deployment strategy has 

an effect on the routing heuristics.  

 

2. Assumptions 
 

First, we implement our experiments using Uniform and Poisson distributions to 

investigate the effect of 1D, 2D, and 3D using CMAX and OML heuristics. Then, 

experiments on non-single distributions were done using Uniform, Poisson, Normal, and 

Chi-square distributions. With 2-Hetro-distributions and 4-Hetro-distributions, OML and 
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CMAX heuristics were evaluated. These two heuristics has shown superiority over other 

lifetime routing heuristics, that is why they were chosen. In the simulation, the energy 

required by a single-hop transmission between two sensors is (0.001 * d
3
), where d is the 

Euclidean distance between the two sensors. For this purpose 20 sensors were randomly 

populated in each network of 10 networks (Sahni, 2006).  

 
All the experiments were tested on 2.27 GHz, 3.00 GB of RAM laptop running under 

Windows Vista Home. The simulation for those lifetimes routing heuristics were 

implemented using MATLAB 7.0. 

 

3. Performance Evaluation 
 

First, two routing heuristics that use energy-aware routing metrics has been 

introduced. Finding a scheme for evaluating and comparing the performance of the various 

heuristics is considered to be the next step. As mathematical analysis method is possible to 

be performed in only very few and simple cases, we perform simulations. As requirements 

differ from one application to another, the criterion which suited for some purposes might 

be useless for others. The most popular criterion in the literature is lifetime
††

. 

 

4. Selecting OML and CMAX Parameters 
 

OML and CMAX heuristics were implemented in a single distribution, 2-Hetro-

distripution, and 4-Hetro-distripution using Normal, Poisson, Uniform, and Chi-square 

                                                             
††

 Lifetime is defined as the successfully routed messages before the first failed message route. 
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distributions. Ten sensor networks, each with 20 randomly populated sensors were 

implemented. The transmission radius rT is set to 5. In the definition of ρ , the heuristic 

parameter c was set as = 0.001rT
3
, where rT is the transmission radius. The network lifetime 

was determined for λc = 2
i
, where i = 2. Each single-hop transmission between two sensors 

was assumed to require 0.001 * d
3
. Finally, the initial energy is set to 90 for each sensor. 

(Sahni, 2006) 

 

5. Results and Discussion 
 
 

This section describes the experiment results using single distributions, 2-hetro-

distributions and 4-hetro-distribution. For each case of distribution ten experiments were 

performed to give out ten lifetimes. In our study, as we consider random distributions we 

use the average of these ten lifetimes to calculate the average-lifetime for a single network. 

This is done for ten networks. Different metrics are studied, and three dimensions are 

investigated, based on distributing sensor nodes randomly using Uniform, Poisson, Normal, 

and Chi-square distributions.  

 

5.1. Dimension Effect (Comparing 1D, 2D and 3D): 
 

 
In order to represent a directed graph for sensor network, there exists a unique 

adjacency matrix, (Al-Sharaeh, et al., 2008). In literature, Uniform distribution is used to 

give random positions for sensor nodes as well as the existence of connection between 

sensors in that network. Uniform distribution is used to represent graphs in one dimension 
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(1D). Using 3D better describes real environment than using 1D space to represent the 

position for each sensor in the network. 

 

In order to show the dimension effect, in this section we discuss the results of using 

2D and 3D along with 1D in representing sensor nodes' positions. 

 

5.1.1 Results for Dimension Effect: 
 

Table 4.1 shows the change in the average number of edges, using Uniform 

distribution, when the first failure on sending a message in the network occurs. Table 4.2 

demonstrates the change in the average number of edges, using Poisson distribution. As 

shown in Table 4.1 and Table 4.2, it is clear that the number of edges is decreased when we 

used 3D for representing sensor nodes.  

 

Table 4.1: Average Number of Edges Using Uniform Distribution 

Dimension 8 Nodes 16 Nodes 32 Nodes 64 Nodes 128Nodes 

1D 20.9 90.4 369.1 1511 6094.1 
2D 12.4 55.4 220.1 883.2 3561.1 

3D 6.7 30.1 111 470.9 1911.2 

      

 

Table 4.2: Average Number of Edges Using Poisson Distribution 

Dimension 8 Nodes 16 Nodes 32 Nodes 64 Nodes 128Nodes 

1D 20.6 84.8 371.3 1432.3 5816.4 
2D 11.9 47.9 204.8 819.9 3358.8 

3D 5.6 24.1 119.5 419.9 1629.2 
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Using Formula 4.1, Table 4.3 shows the percentage of average number of edges using 

Poisson to the average number of edges using Uniform distribution. Note that, if the result 

is more than 100% then it means that average number of edges is higher when using 

Poisson distribution; otherwise, it is higher when using Uniform distribution. In a network 

with 128 nodes, the average number of edges using Poisson distribution is 85.24% of edges 

using Uniform distribution. 

 

% Percentage =      (4.1)     

 

Energy is conserved using multi-hop routing in wireless sensor networks, (Sahni, 

2006). Hence, the sensor nodes between source (s) and destination (t) are used as relays. As 

we have less number of edges, and less choices of paths for each route, therefore we will 

have less power reservation. For example to travel from source node s to destination node t, 

a lifetime maximization heuristic will give better lifetime for the network if the it is 

provided more alternatives of paths to use for a single route. This leads to the fact that, 

when using 3D we get more power consumption (i.e. less lifetime).  

 

Table 4.3: Average Number of Edges (Percentage of Poisson to Uniform Distribution) 

Dimension 8 Nodes 16 Nodes 32 Nodes 64 Nodes 128Nodes 

1D Percentage 98.56% 93.81% 100.60% 94.79% 95.44% 
2D Percentage 

95.97% 86.46% 93.05% 92.83% 94.31% 

3D Percentage 
83.58% 80.07% 107.66% 89.17% 85.24% 
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According to our experiments, the four distributions are classified into two groups. The 

first group includes Chi-square and Poisson distributions, while the second group includes 

Uniform and Normal distributions. This classification is based on the relationship between 

number of edges and network lifetime. The first group (Chi-square, Poisson) is featured by 

having less average lifetime when changing the representation for sensors from 1D to 3D, 

which agrees with the previous works indicating that the less number of edges we have the 

less lifetime we get. But, unlike the first group, second group (Uniform, Normal) gives the 

opposite, that means when we change from 1D to 3D (knowing that the number of edges 

still decreases) the average lifetime is increased. 

 

We believe that the reason for such results is caused by the aspects of these 

distributions; in the second group, the Uniform and Normal distributions are featured by the 

symmetric nature. That is, they are both representing symmetric environments. But in the 

first group, the two distributions Poisson and Chi-square are having an asymmetric nature; 

this is due to the fact that they both have a shape parameter (that gives the ability of 

simulating different asymmetric environments with a single distribution).       

 

5.2 Single-Distribution Effect on Maximizing Lifetime 
 

Figure 4.1 shows the Uniform, Poisson, Normal, and Chi-square distributions in 3D 

space. As can be seen from Figure 4.1(a), sensor nodes are uniformly distributed by 

Uniform distribution, which can be used to describe the flat terrain environment. Unlike 

Uniform, Poisson distribution gives more concentration of sensor nodes around the mean, 
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as we can see in Figure 4.1(b).Thus; Poisson distribution can well describe the hard terrain 

environment. Figure 4.1(c) shows a 3D Normal distribution, which describes the symmetric 

lightly hard terrains. Never the less, the distribution of sensors using 3D Chi-square is 

shown in Figure 4.1(d), as can be noticed, Chi-square is somehow looks like Poisson 

distribution, but with more concentration to the left of the mean (mean = 20). This leads to 

the fact that Chi-square distribution is used for describing harder terrains in real 

environment.  
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(a) Uniform distribution (b) Poisson distribution 

  

(c) Normal distribution  (d) Chi-square distribution 

Figure 4.1: Different Types of Distributions in 3D Space. 
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Using Uniform, Poisson, Normal and Chi-square distributions give a fair description 

of the real environment, as we will consider different types of surfaces starting from the 

plan area expressed by Uniform distribution, through the symmetric lightly hard terrains 

shown by Normal distribution, and then Poisson distribution is used to express the hard 

terrains, until the extremely hard terrains which is expressed by Chi-square distribution.  

 

Table 4.4 describes the average lifetime for OML and CMAX heuristics using these 

four types of distributions. Figure 4.2 illustrates the effect of different types of distribution 

in maximizing lifetime for the OML. Figure 4.3 shows the effect of different types of 

distribution in maximizing lifetime for the CMAX. Due to the random distribution, it can 

be noticed that the average lifetime for each network is not the same for the ten networks. 
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Table 4.4: Average Lifetime Statistics Using Different Types of Distributions in 3D Space 

  

  

  

 Network 1 Network t 2 Network  3 

 Uni Poi Chi Norm Uni Poi Chi Norm Uni Poi Chi Norm 

Average 

Lifetime 

using 

OML 

8481 2713 765 
2324

3 
0 2522 330 38640 25826 380 1234 13450 

Average 
Lifetime 

using 

CMAX 

704 354 230 2032 623 654 225 1160 676 480 339 1846 

 Network t 4 Network  5 Network  6 

 Uni Poi Chi Norm Uni Poi Chi Norm Uni Poi Chi Norm 

Average 

Lifetime 

using 
OML 

666 4013 1139 20611 12002 553 860 32379 726 2515 747 24778 

Average 

Lifetime 

using 

CMAX 

1527 608 371 1175 924 440 430 928 854 281 363 1063 

 Network 7 Network  8 Network 9 

 Uni Poi Chi Norm Uni Poi Chi Norm Uni Poi Chi Norm 

Average 

Lifetime 
using 

OML 

978 1495 380 40609 0 1698 1258 27728 1026 4183 1001 12069 

Average 

Lifetime 

using 

CMAX 

785 882 273 1080 808 723 244 1163 561 707 432 1155 

 
Network  10 

 Uniform Poisson Chi-square Normal 

Average 

Lifetime 

OML 

23874 564 708 42786 

Average 

Lifetime 

using 
CMAX 

865 926 137 1017 
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As we can see from Figure 4.2, the best average lifetime provided by OML is based 

on Normal distribution, which is about 27629. We believe that the reason for such results 

is caused by the symmetric nature of Normal distribution. The average lifetime of OML 

based on Uniform, Poisson and Chi-square distribution is about 7357, 2063, 842 

respectively. It can be noticed that the lowest average lifetime is provided by Chi-square 

distribution.  

 

  

Figure 4.2: Average Lifetime Using Single Distributions in 3D for OML Heuristic 
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As shown in Figure 4.3, the average lifetime provided by OML is about 1261.9 based 

on Normal distribution, which is the best case for CMAX in single distributions. We 

believe that having this distribution with the best lifetime, as seen with OML heuristic is 

caused by the symmetric nature of Normal distribution. The average lifetime of OML 

based on Uniform, Poisson and Chi-square distribution is about 832, 605, 842, and 304 

respectively. It can be noticed that the descending order of the average lifetime provided 

by the four distributions (i.e. Normal, Uniform, Poisson, then Chi-square)  is still the same 

with CMAX heuristic, but with lower band. We believe that the reason for such results is 

caused by the superiority of OML over CMAX heuristic. 

 

  

Figure 4.3: Average Lifetime Using Single Distributions in 3D for CMAX Heuristic. 
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5.3 Average Lifetime Routing Using Non-single Distributions 
 

By having more than single distribution in the graph of deployment, we investigate 

multi-tone terrains. In this work also, we investigate the deployment route effect on 

maximizing lifetime routing heuristics. For that, we investigated non-single distributions 

for wireless sensor networks were implemented, including 2-Hero-distributions, and 4-

Hetro-distributions. 

 

In 2-Hetro-distribution, we will have 6 types of distributions which are: 

Uniform_Chi-square(UC), Uniform_Poisson(UP), Uniform_Normal(UN), Chi-

squre_Poisson(CP), Chi-squre_Normal(CN), and Normal_Poisson(NP). Implementation for 

the Uniform_Chi-square(UC) distribution for example, will be by having Uniform 

distribution in the top of the graph with Chi-square distribution in the bottom. 

 

In 4-Hetro-distribution, the space of deployment is divided into four quarters; each 

quarter has different type of distribution for network deployment. In this thesis work, we 

will discuss six types of 4-Hetro-distributions, listed as: Poisson_Chi-

square_Normal_Uniform(PCNU),Chi-square_Poisson_Uniform_Normal(CPUN), Normal 

Poisson_Chi-square_Uniform(NPCU),Poisson_Chi-square_Uniform_Normal (PCUN),Chi-

square_Normal_Poisson_Uniform(CNPU), and Chi-square_Poisson_Normal_Uniform 

(CPNU). For example, the four-hetro-distribution (NPCU) is shown in Figure 4.4. 
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N P 

C U 

 

Figure 4.4: Normal_Poisson_Chi-square_Uniform Distribution 

 

The reason for having only six types of 4-Hetro-distributions is that we consider the  

unrepeated distribution for deployment cases, which means that every type of distribution 

will appear only once in each 4-Hetro-distribution. These six types of distributions are 

chosen as a result of making some random sequence of modifications performed by sapping 

distributions' positions, made on the first chosen distribution. 

 

5.4 Results Using 2-Hetro Distributions 
 
 

Changing the type of the distribution of sensor nodes to non-single distributions will 

give us better description for real environment. As we consider the multi-tone terrains with 

many different combination of Hetro-distributions. A 20 sensor networks are deployed to 

be randomly distributed using 2-Hetro-distributions in 3D space.  
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Figure 4.5: Average Lifetime Using Uniform_Chi-square Distribution in 3D Space 

 

              Figure 4.5 shows the average lifetime for 10 sensor networks with 20 sensors in 

each network. Using 3 dimensions, Uniform distribution is positioned above the Chi-square 

distribution. From the figure, the average lifetime for the OML is 77% better than the 

CMAX. Where the percentage difference is calculated as follows: First, we consider which 

heuristic provides greater lifetime in that specific case of distribution. Then, if the average 

lifetime for example the CMAX is greater than that of the OML, then the percentage 

difference is equal to the OML average lifetime, subtracted from the CMAX average 

lifetime, divided by the CMAX average lifetime, all multiplied by 100%, as shown in 

Equation (4.2): 

100% * 
.

Avg.OML - .
%

CMAXAvg

CMAXAvg
Difference =                               (4.2) 

 

If the average lifetime of CMAX less than the average lifetime of OML, the equation 

would be as illustrated in Equation (4.3): 
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100% * 
.

Avg.CMAX - .
%

OMLAvg

OMLAvg
Difference=                                   (4.3) 

 

 
 

 

 
 

     Figure 4.6: Average Lifetime Using Uniform_Normal Distribution in 3D Space 

 

 

Figure 4.6 demonstrates that after we changed the 2-Hetro-distribution to 

Uniform_Normal distribution in 3D space, we found that the performance of OML 

heuristic is still better than the performance of CMAX heuristic. The improvement ratio is 

70%. As can be seen, the band of average lifetime provided when using Uniform_Normal 

distribution is lower than the band of average lifetime given by Uniform_Chisquire 

distribution in Figure 4.5, especially for OML heuristic. 
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Figure 4.7: Average Lifetime Using Chi-square_Normal Distribution in 3D Space 

 

As we can see from Figure 4.7, unlike previous cases, the performance of CMAX 

heuristic is slightly better than the performance of the OML heuristic with improvement 

ratio equals 7%. Since the type of distribution has been changed to Chi-square_Normal, and 

still representing sensors in three dimension space, we believe that the reason for having 

larger average lifetime provided by CMAX is because of using Chi-square distribution at 

the top of the deployment area with Normal distribution at the bottom. Also, it is noticed 

that OML heuristic is showing higher deviation compared to CMAX heuristic.  
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Figure 4.8: Average Lifetime Using Chi-square_Poisson Distribution in 3D Space 

 

 

            Figure 4.8 demonstrates the performance of OML vs. CMAX heuristic when the 

distribution is Chi-square_Poisson using three dimensions for representing the position of 

each sensor. From the figure, the average lifetime of CMAX is 38% better than the average 

lifetime of OML. As can be noticed, in some cases when using the 2-Heto-distributions, 

CMAX is showing superiority over OML. We believe that having such results is caused by 

the effect of the deployment strategy. In addition, the band of the lifetime provided by Chi-

square_Poisson experiments is very low when compared with other 2-Hetro-distributions 

for both OML and CMAX heuristics. We believe that this difference in band of average 

lifetime between this case and other 2-Hetro-ditributions is caused by the effect of 

distribution type. This means, when the Chi-square and Poisson distributions are founded in 

the same area to be covered by sensors, with Poisson distribution below the Chi-square 

distribution, then CMAX is preferred, with expectation for having low band of lifetime 

provided by both OML and CMAX. 
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Figure 4.9: Average Lifetime Using Uniform_Poisson Distribution in 3D Space 

 

 

Figure 4.9 exposes the 2-Hetro-distribution when changed to Uniform_Poisson 

using three dimensions to represent sensors' positions. As can be seen, the deviation is 

decreased when using CMAX heuristic compared to OML, But OML heuristic is still 

providing much more average lifetime. The OML improvement ratio over CMAX is 

22.7%.   
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Figure 4.10: Average Lifetime Using Normal_Poisson Distribution in 3D Space 

 

 

Figure 4.10 shows that after we modified the 2-Hetro-distribution by having Normal 

distribution positioned above the Poisson distribution (Normal_Poisson distribution). The 

average lifetime for the OML and CMAX were about 64209.6, and 2251.6 respectively. 

Among all the cases we considered in 2-Hetro_Distributions, the figure points out that 

OML heuristic records the highest band of average lifetime. With improvement ratio equals 

to 96.49% over CMAX.  

 

It is worthy to be mentioned here that, while running the case of Normal_Poisson 

distribution with OML heuristic (NP_OML heuristic), it was noticed that the runs took an 

extremely long time (more than 48 hours) compared to other cases. We believe that, this is 

due to the high values for average lifetime obtained by NP_OML. Table 4.5 shows the 

average lifetime statistics for OML and CMAX using 2-Hetro-Distributions in 3D space, 

(*) indicates the higher lifetime. 

A
ll 

R
ig

ht
s R

es
er

ve
d 

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n 
- C

en
te

r  
of

 T
he

si
s D

ep
os

it



www.manaraa.com

- 64 - 

 

 

 

 

Table 4.5: Average Lifetime Statistics Using 2-Hetro-Distributions in 3D Space 

 

5.5 Effect of Distribution Route on Lifetime Maximization: 
 
 

The Deployment Route Effect is considered in our research, as we believe that the 

position of the distribution does make difference, even if it is neighbored with the same 

type of distribution in the left, right, or diagonal positions, but with different quarter 

positions. This means, we care about the order of distributions, and the position we start 

implementing these distributions.  

 

For example, if an airplane is ordered to deploy sensors in a space having the NPCU 

4-Hetro-distribution as shown in Figure 4.4. If that airplane was coming from the north, 

then we will use the same implementation for that space if the airplane came from the 

south, east or west direction. Let's go again to Figure 4.4, if we turned that figure to have C 

at the top-left quarter, N at the top-right, U at the bottom-left and P at the bottom right. As 

we can see, the NPCU 4-Hetro-distribution is still there, we just turned the whole figure 

(i.e.: the airplane is coming from the western side of the same space).  

2-Hetro-Distribution 
CMAX OML 

 

Difference % 

NP 2251.6 64209.6* 96.49% 

CP 639.1* 392.2 38.63% 

CN 1178.2* 1090.7 7.43% 

UN 997.6 3349.9* 70.22% 

UC 971.6 4351.88* 77.67% 

UP 631.7 817.6* 22.74% 
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But, the turned figure we just mentioned can not be read as CNUP 4-Hetro-

distribution. This is due to the fact that each of the two 4-Hetro-distributions expresses 

different terrains. Simply, in the first case we had the NPCU 4-Hetro-distribution, with Chi-

square distribution positioned in the 3
rd

 quarter having Normal distribution above, and 

Uniform distribution at the right side. But in CNUP, the Chi-square distribution is 

positioned at the 1
st
 corner with Uniform distribution below, and Normal distribution at the 

right side. Clearly, these two 4-Hetro-distributions are expressing two different terrains.  

 

Also, it is worthy to be mentioned here that within the single quarter that holds the 

Chi-square distribution, in the first case that is shown in Figure 4.4, the concentration of 

sensors in Chi-square distribution will be in the left side (i.e: to the west direction of the 

figure). But in the case of CNUP distribution, the concentration of sensors deployed by 

Chi-square will be in the left side, which is the South direction of the NPCU distribution. 

 

5.6 Results Using 4-Hetro Distributions 
 
 

After seeing the effect of 2-Hetro-distributions on the performance of OML and 

CMAX, in order to get even more realistic description for multi-tone terrains, we used 4-

Hetro-distributions to distribute sensor nodes. Every network is got the average lifetime by 

deploying ten networks and calculating the mean of their lifetimes. Each network consists 

of 20 sensors that are deployed to be randomly distributed in 3D space using 4-Hedtro-

distributions. 
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Figure 4.11: Average Lifetime Using Poi_Chi_Norm_Uni Distribution in 3D Space 

 

P  C 

N U 

Figure 4.12: Poisson_Chi-square_Normal_Uniform Distribution 

 

Figure 4.11 illustrates the difference between OML heuristic and CMAX heuristic 

in three dimensional representations for sensors, when distribution type is altered to be 

Poi_Chi_Norm_Uni (PCNU) 4-Hetro-distribution. As the figure shows, the average 

lifetime of OML is 4347.7, while CMAX average lifetime is 500.2. The improvement ratio 

on average lifetime obtained by using OML is 88%. Even after changing the distribution 

type from 2-Hetro-distribution to 4-Hetro-distribution, it is still noticed that OML is 

showing higher deviation compared to CMAX, and CMAX is providing lower average 

lifetime when compared to OML. 

A
ll 

R
ig

ht
s R

es
er

ve
d 

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n 
- C

en
te

r  
of

 T
he

si
s D

ep
os

it



www.manaraa.com

- 67 - 

 

 

 

 

 

Figure 4.13: Average Lifetime Using Chi_Poi_Uni_Norm Distribution in 3D Space 

  

C  P 

U N 

Figure 4.14: Chi-square_Poisson_Uniform_Normal Distribution 

 

After seeing the effect of (PCNU) shown in Figure 4.11, we will make some changes 

in the order of that 4-Hetro-distribution to get a new different distribution to be tested. By 

switching the two columns of Figure 4.12, we will get the distribution Chi_Poi_Uni_Norm 

(CPUN), as shown in Figure 4.14. Figure 4.13 disposes the result of experiments on OML 

and CMAX done by deploying 10 networks using Chi_Poi_Uni_Norm (CPUN) distribution 

in 3D. The average lifetime obtained by OML is 1147.8, and the average lifetime obtained 

by CMAX is 721.6. Although, in networks 2, 3 and 4, OML lifetime is lower than CMAX, 

the average lifetime of OML is 37% better than CMAX. 
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Figure 4.15: Average Lifetime Using Norm_Poi_Chi_Uni Distribution in 3D Space 

 

N P 

C U  

Figure 4.16: Normal_Poisson_Chi-square_Uniform Distribution 

 

To get a new different 4-Hetro-distribution, we will alter the previous distribution 

shown in Figure 4.14. This time, the modification process will include two steps. First, 

exchange the 1
st
 and the 4

th
 quarters of Figure 4.14, to get NPUC. Then, exchange the 3

rd
 

and the 4
th
 quarters, to finally have the distribution Norm_Poi_Chi_Uni (NPCU).  

 

Figure 4.15 points out that OML heuristic gives an extremely high average lifetime 

when used with NPCU 4-Hetro-distribution. Clearly, if implemented with NPCU 

distribution, OML will give the largest band of lifetime, compared with all experiments 
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included in this work. As shown in the figure, the average lifetime of OML is 487418.6, 

while CMAX average lifetime is only 873. In the case of NPCU, OML has shown an 

improvement up to 99.8% over CMAX. In Figure 4.15, the average lifetime given by OML 

ranges between 300,000 and 600,000. 

 

Now, two swaps will be needed to generate the new 4-Hitro-distribuion. First, swap 

the two columns of (NPCU) shown in Figure 4.16, then swap the second and the fourth 

quarters. The distribution will be Poi_Chi_Uni_Norm (PCUN) as in Figure 4.18. In this 

case, the average lifetime for OML and CMAX were 4343.43, and 842.2 respectively. 

 

Figure 4.17: Average Lifetime Using Poi_Chi_Uni_Norm Distribution in 3D Space 

 

P  C 

U N  

Figure 4.18: Poisson_Chi-square_Uniform_Normal Distribution 
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As shown in Figure 4.17, when the type of distribution is modified to be PCUN in 3D, 

the OML still provides better average lifetime than CMAX. Improvement achieved by 

OML is more than 80 %. But as we can see, the band of OML average lifetime is relatively 

low compared with NPCU in Figure 4.15. 

 

So far, the current distribution is PCUN, three modifications will be included to 

form the new 4-Hetro-distribution. First modification is to swap the first and third 

distributions positions; this will form UCPN distribution, as a temporal situation to be 

altered by next modification. Second modification, which will affect the UCPN, is to swap 

the first and second quarters' positions, giving out the CUPN distribution. Then, exchange 

the second and the fourth quarters. This will finally form the Chi_Norm_Poi_Uni (CNPU) 

distribution, as Figure 4.20 shows. 
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Figure 4.19: Average Lifetime Using Chi_Norm_Poi_Uni Distribution in 3D Space 

 

C N 

P U 

Figure 4.20: Chi-square_Normal_Poisson_Uniform Distribution 

 

 

Figure 4.19 demonstrates that when the distribution is CNPU, the average lifetime 

of OML was 93% better than CMAX. The average lifetime for the OML and CMAX were 

about 16218.7, and 1038.7 respectively. Three dimensions were used for representing the 

distribution of sensors, and the band of lifetime given by OML ranges between five 

thousands to thirty thousands, which is higher than the band of PCUN shown in Figure 

4.17.  
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Figure 4.21: Average Lifetime Using Chi_Poi_Norm_Uni Distribution in 3D Space 

 

 

C P  

N U 

Figure 4.22: Chi_Poi_Norm_Uni Distribution  

 

Figure 4.22 illustrates the way our 4-Hiro-distribution will look like after swapping 

the 2
nd

 and 3
rd

 quarters. This single modification will lead us to have Chi_Poi_Norm_Uni 

(CPNU). Figure 4.21 points out that, in 3D space when the 4-Hetro-distribution CPNU is 

used in the experiments to compare between OML and CMAX, unexpected results will 

show that CMAX is better than OML. Putting in consideration that the average lifetime 

given by OML is 164.2, and the average lifetime given by CMAX is up to 475.8. It is true 

that band of lifetime is very low for both OML and CMAX, but the improvement achieved 

by CMAX over OML is 65.48%.   
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It is worthy to be mentioned here that, the CPNU distribution is extracted by single 

modification on CNPU distribution. Even though, Figure 4.19 and Figure 4.21 are giving 

very different information about OML and CMAX heuristics. Figure 4.19 illustrates that 

OML is better than CMAX, with high band for the average of lifetime, while Figure 4.21 

demonstrates that with CPNU distribution, OML provides an extremely low average 

lifetime compared to other experiments. Also, CMAX gives low band of lifetime, but it is 

better than OML. We believe that the reason for having such conflict is the single switching 

process, which was made on CNPU to get CPNU distribution. This will lead to the fact 

that; Deployment Route Path does affect the lifetime maximization. Table 4.6 shows the 

average lifetime statistics for OML and CMAX using 4-Hetro-Distributions in 3D space, 

(*) indicates the higher lifetime. 

 

Table 4.6: Average Lifetime Statistics Using 4-Hetro-Distributions in 3D Space 

 

 

 

 

4-Hetro-Distribution 
CMAX OML 

 

Difference % 

PCNU 500.2 4347.7* 88.50% 

PCUN 842.2 4343.43* 80.61% 

CPUN 721.6 1147.8* 37.13% 

CPNU 475.8* 164.23 65.48% 

NPCU 873 487418.6* 99.82% 

CNPU 1038.7 16218.7* 93.60% 
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CONCLUSION AND FUTURE WORK 
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Conclusion and Future Work 

 

1. Conclusion 
 

This study shows that changing the deployment strategy on Wireless Sensor 

Network (WSN) does affect the performance of maximizing lifetime routing heuristics. To 

meet real environment requirements, we used four different types of well known statistical 

techniques to distribute sensor nodes. Two heuristics OML, and CMAX were implemented 

in 3D space. Because of its behavior of assigning high weights to the used edges in the 

current route so that these routes will not be selected next time (one level look ahead), 

OML heuristic showed superiority over CMAX in most of distribution cases. On the other 

hand, CMAX heuristic showed stability when changing the type of Hetro-distribution. In 

addition, some cases of Hetro-distributions that CMAX was providing better average 

lifetime than OML heuristic. 

 

As the accuracy of experimental results will be defected if the distribution was 

wrongly chosen, we fairly evaluate heuristics for the real-world systems using non-single 

distributions. Our work shows that the deployment strategy has an effect in the behavior of 

wireless sensor networks. Using 2-Hetro-Distributions, Noraml_Poisson (NP) distribution 

was the best case for both OML and CMAX heuristics, the average lifetime for OML was 

about 64209 and the average lifetime for CMAX was about 2251. In 4-Hetro-Distributions, 

OML showed the best average lifetime when based on Normal_Poisson_Chi-

square_Uniform (NPCU) distribution with average lifetime more than 487418, and the 4-
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Hetro-Distribution Chi-square_Normal_Poisson_Uniform (CNPU) distribution was the best 

case for CMAX with more than 1038 average lifetime. 

 

Our experiment study, using 2-Hetro-distributions, shows the superiority of OML 

over CMAX in four deployment types those are UN distribution by 70.22%, UP 

distribution by 22.74%, UC distribution by 77.67%, and the best case for OML was when 

the Poisson distribution positioned below Normal distribution (that is NP distribution) with 

improvement ratio up to 96.49%. Furthermore, unlike previous researches, CMAX heuristic 

showed superiority over OML in two cases. In the first case, slight improvement was 

shown by CMAX over OML when Chi-square distribution was positioned above Normal 

(CN) distribution, with improvement ratio more than 7%. Another 2-Hetro-Distribution 

case that shows the superiority of CMAX over OML is the Chi-square_Poisson (CP) 

distribution, with improvement in average lifetime equals to 38.63%. The best average 

lifetime provided by OML was 64209.6 shown in NP distribution. Also, CMAX heuristic 

obtained the best average lifetime when investigated with NP distribution, with average 

lifetime more than 2251. 

 

Our extensive runs show that applying 4-Hetro-Distribution results in up to 99.82% 

improvement ratio when using OML instead of CMAX with the NPCU distribution, which 

is the best 4-Hetro-Distribution case for implementing OML heuristic. In CNPU, CPUN, 

PCUN, and PCNU, OML heuristic provided better average lifetime than CMAX, with 

improvement ratio equals to 93.60%, 37.13%, 80.61%, and 88.50% respectively. The last 

4-Hetro-Distribution case, when the deployment strategy is changed to CPNU, unexpected 
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results revealed that using CMAX heuristic shows superiority over OML heuristic, with 

improvement ratio up to 65.48%.  

 

All previous researches, with the use of single (Uniform, and Poisson) distributions 

in 1D space, agree on the superiority of OML over CMAX. Although, our results show that 

in some cases, using 2-Hero- and 4-Hetro-Distributions in 3D space, CMAX heuristic can 

provide superiority over OML heuristic. This leads to the fact that, Heterogeneity of real 

life terrains (i.e. multi-tone terrain changes) has a major effect on the performance of 

different routing heuristics. 

 

2. Future Work 
 

The goal of this study was to construct a model that simulates a wireless sensor 

network on reality using the 2-Hetro- and 4-Hetro-distributions. This model was tested on 

three dimension (3D) space to evaluate two different heuristics, CMAX and OML. Since 

conserving battery energy in sensor network is a very important metric that affects the 

performance of the whole sensor network, it is recommended to apply new methods that 

maximize lifetime routing in our model, and study the effect of other types of 

Heterogeneous distributions on maximizing lifetime routing like 6-Hetro and 8-Hetro-

Distributions.  
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Appendix A 

To insure that our networks were correctly implemented, we give an example to show 

the probability of Uniform and Chi-square distribution for sensor nodes in 3D space. 

Uniform_3D:  

The adjacency matrix was as follows: 

 

From the above adjacency matrix, we found the frequency for each number_of_edges in 

single node (i.e. node degree), as shown in the following table : 

Node Degree Frequency 

4 5 

3 5 

2 5 

1 5 

Total  50 
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We note that the frequency is equal in the four possible node degrees provided in 

that network. This means, Uniform distribution is providing equal probability for each 

node degree (i.e. nodes are uniformly distributed), as seen in Figure 1. 

 
  Figure 1: Probability Function for Uniform Distribution    

 

Chi-square _3D:   

The adjacency matrix for Chi-square distribution was as follows: 
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From the above adjacency matrix, we found the frequency for each number_of_edges in 

single node (i.e. node degree), as shown in the following table : 

Node Degree Frequency 

0 2 

1 10 

2 5 

3 3 

Total  29 

 
 

We note that the frequency varies in the four possible node degrees provided in that 

network. This means, Chi-square distribution is providing different probability for each 

node degree, as can be seen in Figure 2. 

 

 

Figure 2: Probability Function for Chi-square Distribution 
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